Huygens Attitude Reconstruction Based on Flight Engineering Parameters
نویسندگان
چکیده
Huygens is ESA’s main contribution to the joint NASA/ESA/ASI Cassini/Huygens mission to Saturn and its largest moon Titan. The Probe, delivered to the interface altitude of 1270 km above the surface by NASA/JPL Cassini orbiter, entered the dense atmosphere of Titan on 14 January 2005 and landed on the surface after a descent under parachute of slightly less than 2.5 hours. Huygens continued to function after landing for more than 3 hours. Data was transmitted and successfully recovered by Cassini continuously during the parachute descent and for 72 minutes on the surface. Although the Huygens attitude reconstruction based on the flight engineering parameters was not foreseen during the development phase (no gyros were included), a rough descent under parachute and indications of an anomaly in the probe spin direction make the engineering dataset valuable in the frame of the ADRS (Huygens Attitude Determination and Reconstruction Subgroup) as a complement to the scientific measurements. In addition, several scientific teams have a strong interest in understanding the orientation of the probe for interpreting their data, as DISR (Descent Imager and Spectral Radiometer) and HASI-PWA (Huygens Atmospheric Structure Instrument-Permeability, Wave and Altimetry). In this paper we describe the engineering parameters used for the Probe attitude reconstruction (Clausen et al., 2002), namely the radio link AGC (Automatic Gain Control), RASU and CASU (Radial and Central Accelerometer Sensor Units) and RAU (Radar Altimeter Unit). We explain the methodology applied to indirectly infer the attitude information from the measurements of these sensors. We also discuss and present the reconstructed information related to attitude: spin rate and azimuthal position (during the atmospheric descent), and landing orientation. Tip and tilt implications are still being worked at the time of writing. Preliminary data on their behavior is presented.
منابع مشابه
Comparison of the Huygens Mission and the Sm2 Test Flight for Huygens Attitude Reconstruction*
The Huygens probe is the ESA’s main contribution to the Cassini/Huygens mission, carried out jointly by NASA, ESA and ASI. It was designed to descend into the atmosphere of Titan on January 14, 2005, providing surface images and scientific data to study the ground and the atmosphere of Saturn’s largest moon. In the framework of the reconstruction of the probe’s motions during the descent based ...
متن کاملAdaptive Quaternion Attitude Control of Aerodynamic Flight Control Vehicles
Conventional quaternion based methods have been extensively employed for spacecraft attitude control where the aerodynamic forces can be neglected. In the presence of aerodynamic forces, the flight attitude control is more complicated due to aerodynamic moments and inertia uncertainties. In this paper, a robust nero-adaptive quat...
متن کاملElectromagnetic Absorber Realization Using Huygens Metasurfaces
In this paper, the possible realization of the electromagnetic (EM) absorber as a thin metasurface is considered. The metasurface is based on establishing a passive surface of electric and magnetic currents using the Huygen’s principle. So, the absorber is named Huygens Absorber (HA). The metasurface can be designed using split meander lines with spiral rings. In this way, both sides of the sub...
متن کاملAbnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملAttitude Estimation for a Flexible Spacecraft in an Unstable Spin
An attitude reconstruction algorithm has been developed for a flexible sounding rocket whose spin vector nutates unstably about its minor inertia axis. This algorithm deduces attitude for use in post-flight analysis of the sounding rocket's science data. An additional motive for pursuing this work has been to show that a flexible-body dynamic model can be used in a Kalman filter/smoother-type a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005